es6的Generator
Last Updated:2022-08-12
样子
例子:
function* helloWorldGenerator() {
yield 'hello';
yield 'world';
return 'ending';
}
var hw = helloWorldGenerator();
hw.next()
// { value: 'hello', done: false }
hw.next()
// { value: 'world', done: false }
hw.next()
// { value: 'ending', done: true }
hw.next()
// { value: undefined, done: true }
Generator函数执行后,返回的是es6的Interator
Generator 函数的调用方法与普通函数一样,也是在函数名后面加上一对圆括号。不同的是,调用 Generator 函数后,该函数并不执行,返回的也不是函数运行结果,而是一个指向内部状态的指针对象,也就是上一章介绍的遍历器对象(Iterator Object)
Generator调用next才会执行函数
须调用遍历器对象的next
方法,使得指针移向下一个状态。也就是说,每次调用next
方法,内部指针就从函数头部或上一次停下来的地方开始执行,直到遇到下一个yield
表达式(或return
语句)为止。换言之,Generator 函数是分段执行的,yield
表达式是暂停执行的标记,而next
方法可以恢复执行。
与Iterator接口的关系
由于 Generator 函数就是遍历器生成函数,因此可以把 Generator 赋值给对象的Symbol.iterator
属性,从而使得该对象具有 Iterator 接口。
var myIterable = {};
myIterable[Symbol.iterator] = function* () {
yield 1;
yield 2;
yield 3;
};
[...myIterable] // [1, 2, 3]
上面代码中,Generator 函数赋值给Symbol.iterator
属性,从而使得myIterable
对象具有了 Iterator 接口,可以被...
运算符遍历了。
Generator 函数执行后,返回一个遍历器对象。该对象本身也具有Symbol.iterator
属性,执行后返回自身。
function* gen(){
// some code
}
var g = gen();
g[Symbol.iterator]() === g
// true
next方法可以带一个参数
yield
表达式本身没有返回值,或者说总是返回undefined
。next
方法可以带一个参数,该参数就会被当作上一个yield
表达式的返回值。
function* f() {
for(var i = 0; true; i++) {
var reset = yield i;
if(reset) { i = -1; }
}
}
var g = f();
g.next() // { value: 0, done: false }
g.next() // { value: 1, done: false }
g.next(true) // { value: 0, done: false }
for...of可以自动遍历Generator函数生成的Iterator对象(不需要调用next),并且Iterator返回对象的done为true的值,不会包含在for...of循环里
function* foo() {
yield 1;
yield 2;
yield 3;
yield 4;
yield 5;
return 6;
}
for (let v of foo()) {
console.log(v);
}
// 1 2 3 4 5 // 没有6哦
一旦next
方法的返回对象的done
属性为true
,for...of
循环就会中止,且不包含该返回对象,所以上面代码的return
语句返回的6
,不包括在for...of
循环之中。
利用Generator函数,实现斐波那契数列
function* fibonacci() {
let [prev, curr] = [0, 1];
for (;;) {
yield curr;
[prev, curr] = [curr, prev + curr];
}
}
for (let n of fibonacci()) {
if (n > 1000) break;
console.log(n);
}
Generator.prototype.throw在函数内部抛出异常
不要混淆遍历器对象的throw
方法和全局的throw
命令
Generator 函数返回的遍历器对象,都有一个throw
方法,可以在函数体外抛出错误,然后在 Generator 函数体内捕获。
var g = function* () {
try {
yield;
} catch (e) {
console.log('内部捕获', e);
}
};
var i = g();
i.next();
try {
i.throw('a');
i.throw('b');
} catch (e) {
console.log('外部捕获', e);
}
// 内部捕获 a
// 外部捕获 b
上面代码中,遍历器对象i
连续抛出两个错误。第一个错误被 Generator 函数体内的catch
语句捕获。i
第二次抛出错误,由于 Generator 函数内部的catch
语句已经执行过了,不会再捕捉到这个错误了,所以这个错误就被抛出了 Generator 函数体,被函数体外的catch
语句捕获。
注意,不要混淆遍历器对象的throw
方法和全局的throw
命令。
上面代码的错误,是用遍历器对象的throw
方法抛出的,而不是用throw
命令抛出的。后者只能被函数体外的catch
语句捕获。
var g = function* () {
while (true) {
try {
yield;
} catch (e) {
if (e != 'a') throw e;
console.log('内部捕获', e);
}
}
};
var i = g();
i.next();
try {
throw new Error('a');
throw new Error('b');
} catch (e) {
console.log('外部捕获', e);
}
// 外部捕获 [Error: a]
一旦 Generator 执行过程中抛出错误,且没有被内部捕获,就不会再执行下去了。
如果此后还调用next
方法,将返回一个value
属性等于undefined
、done
属性等于true
的对象,即 JavaScript 引擎认为这个 Generator 已经运行结束了。
function* g() {
yield 1;
console.log('throwing an exception');
throw new Error('generator broke!');
yield 2;
yield 3;
yield 4;
}
function log(generator) {
var v;
console.log('starting generator');
try {
v = generator.next();
console.log('第一次运行next方法', v);
} catch (err) {
console.log('捕捉错误', v);
}
try {
v = generator.next();
console.log('第二次运行next方法', v);
} catch (err) {
console.log('捕捉错误', v);
}
try {
v = generator.next();
console.log('第三次运行next方法', v);
} catch (err) {
console.log('捕捉错误', v);
}
console.log('caller done.1');
try {
v = generator.next();
console.log('第四次运行next方法', v);
} catch (err) {
console.log('捕捉错误', v);
}
console.log('caller done.2');
}
log(g());
// starting generator
// 第一次运行next方法 {value: 1, done: false}
// throwing an exception
// 捕捉错误 {value: 1, done: false}
// 第三次运行next方法 {value: undefined, done: true}
// caller done.1
// 第四次运行next方法 {value: undefined, done: true}
// caller done.2
上面代码一共三次运行next
方法,第二次运行的时候会抛出错误,然后第三次运行的时候,Generator 函数就已经结束了,不再执行下去了。
Generator.prototype.return
返回给定的值,并且终结遍历 Generator 函数
function* gen() {
yield 1;
yield 2;
yield 3;
}
var g = gen();
g.next() // { value: 1, done: false }
g.return('foo') // { value: "foo", done: true }
g.next()
上面代码中,遍历器对象g
调用return()
方法后,返回值的value
属性就是return()
方法的参数foo
。并且,Generator 函数的遍历就终止了,返回值的done
属性为true
,以后再调用next()
方法,done
属性总是返回true
。
如果return()
方法调用时,不提供参数,则返回值的value
属性为undefined
。
有try...finally, return时在try里头,那么会直接跳到finally执行,并把finally执行完后终结遍历,并返回之前return语句指定的返回值(即,还未终结遍历Generator函数)
function* numbers () {
yield 1;
try {
yield 2;
yield 3;
} finally {
yield 4;
yield 5;
}
yield 6;
}
var g = numbers();
g.next() // { value: 1, done: false }
g.next() // { value: 2, done: false }
g.return(7) // { value: 4, done: false }
g.next() // { value: 5, done: false }
g.next() // { value: 7, done: true }
注意最后返回值是return语句的入参:7
yield* 表达式
如果在 Generator 函数内部,调用另一个 Generator 函数。需要在前者的函数体内部,自己手动完成遍历。
ES6 提供了yield*
表达式,作为解决办法,用来在一个 Generator 函数里面执行另一个 Generator 函数。
yield*
后面的表达式,应该是一个*es6的Interator*
yield* 表达式
,来遍历完全二叉树
// 下面是二叉树的构造函数,
// 三个参数分别是左树、当前节点和右树
function Tree(left, label, right) {
this.left = left;
this.label = label;
this.right = right;
}
// 下面是中序(inorder)遍历函数。
// 由于返回的是一个遍历器,所以要用generator函数。
// 函数体内采用递归算法,所以左树和右树要用yield*遍历
function* inorder(t) {
if (t) {
yield* inorder(t.left);
yield t.label;
yield* inorder(t.right);
}
}
// 下面生成二叉树
function make(array) {
// 判断是否为叶节点
if (array.length == 1) return new Tree(null, array[0], null);
return new Tree(make(array[0]), array[1], make(array[2]));
}
let tree = make([[['a'], 'b', ['c']], 'd', [['e'], 'f', ['g']]]);
// 遍历二叉树
var result = [];
for (let node of inorder(tree)) {
result.push(node);
}
result
// ['a', 'b', 'c', 'd', 'e', 'f', 'g']
Generator函数的this
Generator 函数总是返回一个遍历器,ES6 规定这个遍历器是 Generator 函数的实例,也继承了 Generator 函数的prototype
对象上的方法。
function* g() {}
g.prototype.hello = function () {
return 'hi!';
};
let obj = g(); // 注意看,这里是函数调用(g),而不是把g当做构造函数调用(new)。当然,g也不能当做构造函数调用(即不能new)
obj instanceof g // true
obj.hello() // 'hi!'
Generator的异步应用
参数的"传值调用"和"传名调用"
Thunk 函数早在上个世纪 60 年代就诞生了。
那时,编程语言刚刚起步,计算机学家还在研究,编译器怎么写比较好。一个争论的焦点是"求值策略",即函数的参数到底应该何时求值。
Thunk函数
编译器的“传名调用”实现,往往是将参数放到一个临时函数之中,再将这个临时函数传入函数体。这个临时函数就叫做 Thunk 函数。
JS的Thunk函数
在 JavaScript 语言中,Thunk 函数替换的不是表达式,而是多参数函数,将其替换成一个只接受回调函数作为参数的单参数函数。
// 正常版本的readFile(多参数版本)
fs.readFile(fileName, callback);
// Thunk版本的readFile(单参数版本)
var Thunk = function (fileName) {
return function (callback) {
return fs.readFile(fileName, callback);
};
};
var readFileThunk = Thunk(fileName);
readFileThunk(callback);
上面代码中,fs
模块的readFile
方法是一个多参数函数,两个参数分别为文件名和回调函数。经过转换器处理,它变成了一个单参数函数,只接受回调函数作为参数。这个单参数版本,就叫做 Thunk 函数。
任何函数,只要参数有回调函数,就能写成 Thunk 函数的形式。
生产环境的转换器,建议使用 Thunkify 模块。
$ npm install thunkify
Thunk 函数的自动流程管理
Thunk 函数真正的威力,在于可以自动执行 Generator 函数。下面就是一个基于 Thunk 函数的 Generator 执行器。
function run(fn) {
var gen = fn();
function next(err, data) {
var result = gen.next(data);
if (result.done) return;
result.value(next);
}
next();
}
function* g() {
// ...
}
run(g);
上面代码的run
函数,就是一个 Generator 函数的自动执行器。内部的next
函数就是 Thunk 的回调函数。next
函数先将指针移到 Generator 函数的下一步(gen.next
方法),然后判断 Generator 函数是否结束(result.done
属性),如果没结束,就将next
函数再传入 Thunk 函数(result.value
属性),否则就直接退出。
有了这个执行器,执行 Generator 函数方便多了。不管内部有多少个异步操作,直接把 Generator 函数传入run
函数即可。当然,前提是每一个异步操作,都要是 Thunk 函数,也就是说,跟在yield
命令后面的必须是 Thunk 函数。
co 模块
co 模块是著名程序员 TJ Holowaychuk 于 2013 年 6 月发布的一个小工具,用于 Generator 函数的自动执行。
下面是一个 Generator 函数,用于依次读取两个文件。
var gen = function* () {
var f1 = yield readFile('/etc/fstab');
var f2 = yield readFile('/etc/shells');
console.log(f1.toString());
console.log(f2.toString());
};
co 模块可以让你不用编写 Generator 函数的执行器。
var co = require('co');
co(gen);
上面代码中,Generator 函数只要传入co
函数,就会自动执行。
co
函数返回一个Promise
对象,因此可以用then
方法添加回调函数。
co(gen).then(function (){
console.log('Generator 函数执行完成');
});
上面代码中,等到 Generator 函数执行结束,就会输出一行提示。